Вопрос задан 17.02.2019 в 02:50. Предмет Геометрия. Спрашивает Лавкрафт Кир.

Телефонная проволока длиной 15 м,протянута от телефонного столба,где она прикреплена,на высоте 8 м

от поверхности земли,к дому,где ее прикрепили на высоте 20 м. Найти расстояние между домом и столбом,предполагая,что проволока не провисает. Если можно еще рисунок,но или хотя бы решение. ПОЖАЛУЙСТААА!!!!!!!!!!!!!!!
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Сипченко Данил.
Решение смотри во вложении
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given the length of a telephone wire, which is 15 meters. The wire is attached to a telephone pole at a height of 8 meters from the ground and to a house at a height of 20 meters from the ground. We need to find the distance between the house and the pole, assuming the wire does not sag.

Solution

To solve this problem, we can use the Pythagorean theorem. According to the theorem, in a right-angled triangle, the square of the length of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the other two sides.

In this case, the distance between the house and the pole forms the hypotenuse of a right-angled triangle, while the heights of the pole and the house form the other two sides.

Let's denote the distance between the house and the pole as d, the height of the pole as h1, and the height of the house as h2.

Using the Pythagorean theorem, we can write the equation:

d^2 = (h2 - h1)^2 + 15^2

Simplifying the equation, we get:

d^2 = (20 - 8)^2 + 15^2

d^2 = 12^2 + 15^2

d^2 = 144 + 225

d^2 = 369

Taking the square root of both sides, we find:

d = √369

Calculating the value of d, we get:

d ≈ 19.21 meters

Therefore, the distance between the house and the pole is approximately 19.21 meters.

Answer

The distance between the house and the pole, assuming the wire does not sag, is approximately 19.21 meters.

Diagram

Here is a diagram to help visualize the problem:

``` | | 20 m |_____________________ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос