Вопрос задан 13.02.2019 в 14:18. Предмет Геометрия. Спрашивает Гордеев Данил.

1)Касательные в точках А и В к окружности с центром О пересекаются под углом 72 градуса. Найдите

угол АВО. Ответ дайте в градусах. 2)В остроугольном треугольнике АВС высота АН равна 19√21,а сторона АВ равна 95. Найдите cosВ
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Сапожников Дмитрий.
1)
Точка пересечения касательных - C, уг. C=72°
Рассмотрим четырехугольник AOBC.
углы OBC=OAC=90° (радиусы перпендикулярны касательным)
Тогда, AOB+90+90+72=360°
AOB=360-90-90-72=108°
Треугольник AOB - равнобедренный, значит, угол ABO=BAO=(180-AOB)/2=(180-108)/2=36°
Ответ: 36°

2) cosB=HB/AB
sinB=AH/AB
sinB=19√21/95=√21/5
cosB=√(1-sin²B)=√(1-21/25)=√(4/25)=2/5
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос