
Вопрос задан 09.02.2019 в 05:08.
Предмет Геометрия.
Спрашивает Рукавишникова Анечка.
В треугольнике ABC медианы CD и BE пересекаются в точке K. Найдите площадь четырёхугольника ADKE,
если BC = 20, AC = 12, угол ACB = 135 градусов.

Ответы на вопрос

Отвечает Матула Олександр.
найдем площадь треугольника ABC
построим высоту BH (она будет вне треуг.ABC, т.к. он тупоугольный), получим прямоугольный треугольник CBH, в кот. угол BCH = 180-ACB (как внешний к ACB) = 180-135 = 45 => треуг.BCH - равнобедренный
по т.Пифагора BH^2+CH^2 = BC^2 => 2BH^2 = 20*20 => BH^2 = 200
BH = 10корень(2)
S(ABC) = 1/2 * 12 * 10корень(2) = 60корень(2)
МедианА треугольника делит его на 2 равновеликих (т.е. площади равны) треугольника.
Построим третью медиану.
МедианЫ треугольника разбивают его на 6 равновеликих треугольников.
Очевидно, что ADKE состоит из двух треугольников, площади кот. равны и = 1/6 S(ABC)
S(ADKE) = 2*1/6*S(ABC) = 1/3*60корень(2) = 20корень(2)


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili