
Вопрос задан 06.02.2019 в 09:54.
Предмет Геометрия.
Спрашивает Курявский Илья.
Периметр треугольника равен 16, радиус окружности, вписанной в этот треугольник, равен √3. Найдите
расстояние от центра вписанной окружности до вершины B, если AC=7

Ответы на вопрос

Отвечает Беляев Сергей.
Как вариант более менее геометрического доказательства того, что входные данные неправильные:
Пусть O1 - центр вписанной в треугольник окружности,
r - её радиус
O2 - центр вневписанной окружности, касающейся стороны AC,
R2 - её радиус
O3 - центр вневписанной окружности, касающейся стороны AB,
R3 - eё радиус
p - полупериметр ABC
S = p * r = 8√3
R2 = S / (p - AC) = 8√3
Рассмотрим ΔAO1O2:
пусть O1O2 ∩ AC = K
AC - общая касательная к окружностям с центрами O1 и O2 => точки O1, O2 и K лежат на одной прямой и O1O2 ⊥ AC
AO2 - биссектриса, тк центр вневписанной окружности лежит в точке пересечения биссектрис внешних углов, образованных продолжениями сторон, которых она касается
AO1 - биссектриса, тк центр вписанной окружности лежит в точке пересечения биссектрис
AO1 и AO2 - биссектрисы смежных углов => AO1 ⊥ AO2
Таким образом, AK - высота ΔABC опущенная из прямого угла =>
AK = √(√3*8√3) = 2√6
из ΔAO1K:
по теореме Пифагора
AO1 = 3√3 (o1k - радиус вписанной окружности)
sin∠O1AK = 1 / 3
cos∠O1AK = 2√2 / 3
sin(2∠O1AK) = sin∠BAC = 2sin∠O1AK * cos∠O1AK = 4√2 / 9
Найдем AB из формулы площади:
AB = 2S / (AC * sin∠BAC) = 18√6 / 7
Заметим, что зная сторону AC, нам удалось найти расстояние O1A, значит, зная сторону AB, мы сможем найти искомое O1B
Аналогично:
R3 = 224√3 / (28 - 9√6)
O1O3 ∩ AB = L
BL = √(672 / (28 - 9√6))
по т Пифагора
BO1 = √( (756 - 27√6) / (28 - 9√6) ) = 3√( (84 - 3√6) / (28 - 9√6) )
Полученный результат ~ 27, а периметр = 16
длина биссектрисы никак не может превышать длину периметра, а здесь это только лишь её часть => периметр треугольника с радиусом вписанной окружности √3 не может быть = 16 или наоборот, при фиксированном радиусе, такого периметра быть не может
Пусть O1 - центр вписанной в треугольник окружности,
r - её радиус
O2 - центр вневписанной окружности, касающейся стороны AC,
R2 - её радиус
O3 - центр вневписанной окружности, касающейся стороны AB,
R3 - eё радиус
p - полупериметр ABC
S = p * r = 8√3
R2 = S / (p - AC) = 8√3
Рассмотрим ΔAO1O2:
пусть O1O2 ∩ AC = K
AC - общая касательная к окружностям с центрами O1 и O2 => точки O1, O2 и K лежат на одной прямой и O1O2 ⊥ AC
AO2 - биссектриса, тк центр вневписанной окружности лежит в точке пересечения биссектрис внешних углов, образованных продолжениями сторон, которых она касается
AO1 - биссектриса, тк центр вписанной окружности лежит в точке пересечения биссектрис
AO1 и AO2 - биссектрисы смежных углов => AO1 ⊥ AO2
Таким образом, AK - высота ΔABC опущенная из прямого угла =>
AK = √(√3*8√3) = 2√6
из ΔAO1K:
по теореме Пифагора
AO1 = 3√3 (o1k - радиус вписанной окружности)
sin∠O1AK = 1 / 3
cos∠O1AK = 2√2 / 3
sin(2∠O1AK) = sin∠BAC = 2sin∠O1AK * cos∠O1AK = 4√2 / 9
Найдем AB из формулы площади:
AB = 2S / (AC * sin∠BAC) = 18√6 / 7
Заметим, что зная сторону AC, нам удалось найти расстояние O1A, значит, зная сторону AB, мы сможем найти искомое O1B
Аналогично:
R3 = 224√3 / (28 - 9√6)
O1O3 ∩ AB = L
BL = √(672 / (28 - 9√6))
по т Пифагора
BO1 = √( (756 - 27√6) / (28 - 9√6) ) = 3√( (84 - 3√6) / (28 - 9√6) )
Полученный результат ~ 27, а периметр = 16
длина биссектрисы никак не может превышать длину периметра, а здесь это только лишь её часть => периметр треугольника с радиусом вписанной окружности √3 не может быть = 16 или наоборот, при фиксированном радиусе, такого периметра быть не может


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili