Вопрос задан 24.04.2018 в 13:52. Предмет Геометрия. Спрашивает Кочнева Александра.

Периметр равнобедренного тупоугольного треугольника равен 36см, а одна из его сторон больше другой

на 6см. Найдите стороны треугольника. (Задача решается двумя способами)
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Мартыненко Александр.

Дано: ∆АВС- равнобедренный. Р∆АВС=36см.ВС>АС на 6 см.
Найти:АВ,АС,ВС
Решение:
Пусть х см будет АС, тогда АВ= х см, ВС= х+6. Зная, что Р∆АВМ= 36 см, составим и пешим уравнение:
х+х+х+6=36
х+х+х=36-6
3х=30
х=30:3
х=10
10 см-АВ и АС
1)10+6=16 (см) - ВС
Ответ:10 см, 10 см, 16 см.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос