Вопрос задан 24.04.2018 в 06:05. Предмет Геометрия. Спрашивает Ланчези Влад.

докажите, что четырехугольник - ромб, если его вершинами являются середины сторон!а)равнобедренной

трапеции
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Микитчин Наталя.

В произвольном выпуклом четырехугольнике  - такой четырехугольник с вершинами в серединах сторон - параллелограмм, поскольку противоположные стороны являются средними линиями в треугольниках, образованных боковыми сторонами и диагоналями. Поэтому стороны этого четырехугольника параллельны диагоналям исходного четырехугольника, и - важно! - равны половинам диагоналей (ну, скажем, стороны 1 и 3 параллельны одной диагонали исходного четырехугольника и равны её половине, а стороны 2 и 4 - другой).

Остается сказать, что в равнобедренной трапеции диагонали равны. Следовательно, равны соседние стороны рассмотриваемого параллелограмма - они равны половине диагоналей. Поэтому он - ромб.

 

 

(Полупустой стакан равен полуполному. Поэтому пустой стакан равен полному :)))

 

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос