
Вопрос задан 17.01.2019 в 19:39.
Предмет Геометрия.
Спрашивает Куркина Лена.
В тупоуглольном треугольнике CDE угол D=60° ,CD=6,CE=2√7. Найдите площадь CDE


Ответы на вопрос

Отвечает Баёк Дмитрий.
Sтреугольника = 0.5 * CD * DE * sin(60°)
Sтреугольника = 0.5 * 6 * DE * √3/2 = 3√3/2 * DE
по т.косинусов: (2√7)² = 6² + DE² - 2*6*DE*cos(60°)
28 = 36 + DE² - 6*DE
DE² - 6*DE + 8 = 0
по т.Виета DE = 2 или DE = 4
самая большая сторона треугольника =6: 2√7 = √28 < √36 = 6
следовательно, угол CED -тупой, cos(CED) < 0
если DE=2:
по т.синусов: 36 = 28 + 4 - 2*2√7*2*cos(CED)
4 = -8√7*cos(CED) ---> cos(CED) = -1/(2√7) < 0
если DE=4:
по т.синусов: 36 = 28 + 16 - 2*2√7*4*cos(CED)
-8 = -16√7*cos(CED) ---> cos(CED) = +1/(2√7) > 0 (противоречит условию) ---> DE=2
Sтреугольника = 3√3
Sтреугольника = 0.5 * 6 * DE * √3/2 = 3√3/2 * DE
по т.косинусов: (2√7)² = 6² + DE² - 2*6*DE*cos(60°)
28 = 36 + DE² - 6*DE
DE² - 6*DE + 8 = 0
по т.Виета DE = 2 или DE = 4
самая большая сторона треугольника =6: 2√7 = √28 < √36 = 6
следовательно, угол CED -тупой, cos(CED) < 0
если DE=2:
по т.синусов: 36 = 28 + 4 - 2*2√7*2*cos(CED)
4 = -8√7*cos(CED) ---> cos(CED) = -1/(2√7) < 0
если DE=4:
по т.синусов: 36 = 28 + 16 - 2*2√7*4*cos(CED)
-8 = -16√7*cos(CED) ---> cos(CED) = +1/(2√7) > 0 (противоречит условию) ---> DE=2
Sтреугольника = 3√3


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili