
В параллелограмме ABCD известны стороны AB = a, BC = b и угол BAD = Найдите расстояние между
центрами окружностей, описанных около треугольников BCD и DAB.

Ответы на вопрос

Центр описанной вокруг треугольника окружности находится в точке пересечения срединных перпендикуляров треугольника.
Треугольники АВD и BCD равны, т.к. параллелограмм делится диагональю ВD на два равных треугольника.
Радиусы описанных вокруг этих треугольников окружностей равны.
Проведем срединные перпендикуляры и найдем центры О и О1 описанных окружностей.
Соединив центры О и О1 с вершинами В и D параллелограмма, получим ромб
ВОDО1, т.к. его стороны - радиусы равных описанных окружностей, и диагонали пересекаются под прямым углом.
Его диагональ ОО1- искомое расстояние между центрами окружностей.
Угол ВОD центральный ( находится между двумя радиусами окружности с центром О) и равен удвоенному углу α, который является вписанным в эту окружность.
Сторона ромба = R
R=a:2 sin α
где а - диагональ BD параллелограмма
α — угол ромба, лежащий против стороны BD.
Ход решения:
1. Найти ВD по теореме косинусов
Найти сторону ОВ=R
Найти ОО1, диагональ ромба, - искомое расстояние - по формуле
d=a√(2-2·cos α)=a√(2+2·cosβ)


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili