Вопрос задан 22.04.2018 в 14:14. Предмет Геометрия. Спрашивает Белоиваненко Светлана.

Дан треугольник ABC. A(0;1), B(1;-4), C(5,2). 1) Найдите координаты середины K стороны BC. 2)

Докажите, что (AK) перпендикулярно (BC)
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Резниченко Ирина.

Координаты середины отрезка ВС найдем по формуле:
x = (x1 + x2)/2, y = (y1 + y2)/2 или х=6/2=3, y=-2/2=-1.
Итак, точка К(3;-1)
Условие перпендикулярности векторов
Векторы являются перпендикулярными тогда и только тогда, когда их скалярное произведение равно нулю.
Даны два вектора a(Хa;Ya) и b(Xb;Yb). Эти векторы будут перпендикулярны, если выражение XaXb + YaYb = 0.
Координаты вектора равны разности соответствующих координат точек его конца и начала ab{х2-х1;y2-y1}
В нашем случае координаты векторов АК{3;-2}, ВС{4;6}.
XaXb + YaYb = (3*4) + (-2*6) = 12-12 =0.
Вектора АК и ВС перпендикулярны, что и требовалось доказать.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос