
Вопрос задан 22.04.2018 в 14:14.
Предмет Геометрия.
Спрашивает Белоиваненко Светлана.
Дан треугольник ABC. A(0;1), B(1;-4), C(5,2). 1) Найдите координаты середины K стороны BC. 2)
Докажите, что (AK) перпендикулярно (BC)

Ответы на вопрос

Отвечает Резниченко Ирина.
Координаты середины отрезка ВС найдем по формуле:
x = (x1 + x2)/2, y = (y1 + y2)/2 или х=6/2=3, y=-2/2=-1.
Итак, точка К(3;-1)
Условие перпендикулярности векторов
Векторы являются перпендикулярными тогда и только тогда, когда их скалярное произведение равно нулю.
Даны два вектора a(Хa;Ya) и b(Xb;Yb). Эти векторы будут перпендикулярны, если выражение XaXb + YaYb = 0.
Координаты вектора равны разности соответствующих координат точек его конца и начала ab{х2-х1;y2-y1}
В нашем случае координаты векторов АК{3;-2}, ВС{4;6}.
XaXb + YaYb = (3*4) + (-2*6) = 12-12 =0.
Вектора АК и ВС перпендикулярны, что и требовалось доказать.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili