
Вопрос задан 10.01.2019 в 00:12.
Предмет Геометрия.
Спрашивает Водолазская Юнона.
Докажите, что треугольник является прямоугольным, если его стороны пропорциональны числам 5, 12 и
13.

Ответы на вопрос

Отвечает Рудько Олег.
Пусть х - коэффициент пропорциональности.
Тогда стороны треугольника:
5х, 12х, 13х.
По теореме, обратной теореме Пифагора:
если в треугольнике квадрат большей стороны равен сумме квадратов двух других сторон, то треугольник прямоугольный.
Проверим:
(13x)² = (5x)² + (12x)²
169x² = 25x² + 144x²
169x² = 169x² - верно, значит треугольник со сторонами, пропорциональными числам 5, 12, 13 - прямоугольный.
Тогда стороны треугольника:
5х, 12х, 13х.
По теореме, обратной теореме Пифагора:
если в треугольнике квадрат большей стороны равен сумме квадратов двух других сторон, то треугольник прямоугольный.
Проверим:
(13x)² = (5x)² + (12x)²
169x² = 25x² + 144x²
169x² = 169x² - верно, значит треугольник со сторонами, пропорциональными числам 5, 12, 13 - прямоугольный.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili