
Вопрос задан 07.01.2019 в 13:54.
Предмет Геометрия.
Спрашивает Лукашова Ира.
Докажите,что площадь выпуклого четырехугольника, диагонали которого взаимно перпендикулярны, равна
половине произведения диагоналей.

Ответы на вопрос

Отвечает Мокрицкая Рената.
После построения диагоналей АС и ВЕ имеем четыре прямоугольных треугольника АОВ, ВОС, СОЕ и АОЕ. Площадь АВСЕ может быть представлена суммой площадей всех четырех треугольников:
S АВСЕ = S1+S2+S3+S4
Зная, что площадь прямоугольного треуг-ка равна половине произведения его катетов, запишем:
S = 1/2*АО*ВО+1/2*ВО*СО+1/2*СО*ЕО+1/2*АО*ЕО
S= 1/2(АО*ВО+ВО*СО+СО*ЕО+АО*ЕО)
S= 1/2(ВО(АО+СО)+ЕО(СО+АО))
АО+СО=АС, тогда
S= 1/2(ВО*АС+ЕО*АС)
S= 1/2(АС(ВО+ЕО))
ВО+ЕО=ВЕ, тогда
S= 1/2(АС*ВЕ), что и требовалось доказать.
S АВСЕ = S1+S2+S3+S4
Зная, что площадь прямоугольного треуг-ка равна половине произведения его катетов, запишем:
S = 1/2*АО*ВО+1/2*ВО*СО+1/2*СО*ЕО+1/2*АО*ЕО
S= 1/2(АО*ВО+ВО*СО+СО*ЕО+АО*ЕО)
S= 1/2(ВО(АО+СО)+ЕО(СО+АО))
АО+СО=АС, тогда
S= 1/2(ВО*АС+ЕО*АС)
S= 1/2(АС(ВО+ЕО))
ВО+ЕО=ВЕ, тогда
S= 1/2(АС*ВЕ), что и требовалось доказать.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili