
Вопрос задан 07.01.2019 в 12:18.
Предмет Геометрия.
Спрашивает Петрів Юлія.
1)В ромбе ABCD из вершины тупого угла В проведены высоты ВЕ и ВF к сторонам AD и DC. Угол
EBF=30°.Найти периметр ромба, если ВЕ=6см.2)С точки к прямой проведено 2 наклонные.Одна из них равна 22 см и образует с прямой, угол 45°.Найти длину второй наклонной, если ее проэкция на эту прямую = корень из 82.

Ответы на вопрос

Отвечает Omar Adema.
1) Высота ромба перпендикулярна обеим противолежащим сторонам. -- угол СВЕ=90°, угол FВЕ=СВЕ-CBF=90°-30°=60°⇒
∠ВСF=30°
Противоположные углы параллелограмма равны. ⇒ ВЕ противолежит углу 30°, гипотенуза АВ треугольника АВЕ=2•6=12 см
Все стороны ромба равны ⇒
Р=12•4=48 см
———
2) Обозначим наклонные ВА и ВС;
ВН - расстояние от т.В до прямой. ВА=22 см, угол АВС=45°
ВН⊥АС.
Сумма острых углов прямоугольного треугольника равна 90°⇒
∆ АВН - равнобедренный.
ВН=АВ•sin45°=11√2
Из прямоугольного ∆ ВСН гипотенуза
ВС=√(BH²+CH²)=√(242+82)=18 см



Отвечает Углава Дима.
Решения в приложении.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili