
Вопрос задан 20.04.2018 в 13:41.
Предмет Геометрия.
Спрашивает Аверьянова Дарья.
Диагональ осевого сечения равностороннего цилиндра ( в осевом сечении- квадрат) равна a. Найдите
площадь полной поверхности вписанной в этот цилиндр шестиугольной призмы.

Ответы на вопрос

Отвечает Коломак Ярослав.
В осевом сечении квадрат, его диагональ равна а, значит, диаметр равен высоте и равен a/√2.
D = H = a/√2
В цилиндр вписывают правильную 6-угольную призму. Ее сторона основания
b = R = a/(2√2) = a√2/4
А высота равна H = a/√2
Основание - правильный 6-угольник - делим на 6 равн-них тр-ков со стороной b.
Площадь оснований призмы S(осн) = 6*b^2*√3/4 = 3/2*2a^2/16*√3 = a^2*3√3/16
Боковая поверхность состоит из 6 прям-ков с длиной b и высотой H
S(пр) = b*H = a√2/4*a/√2 = a^2/4
Полная площадь поверхности
S = 2S(осн) + 6S(пр) = a^2*3√3/8 + 6a^2/4 = 3a^2/8*(√3 + 4)


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili