
Вопрос задан 06.12.2018 в 09:26.
Предмет Геометрия.
Спрашивает Майоров Евгений.
Сроооооочно!!!! Из произвольной точки М катета АС прямоугольного треугольника АВС опущен
перпендикуляр МК на гипотенузу АВ. Докажите, что угол МКС=углу МВС.

Ответы на вопрос

Отвечает Косарев Никита.
По условию МК-перпендикуляр, значит < АКМ = < ВКМ =90°, также < ВСА=90°. Если рассмотреть четырехугольник ВСМК, то в нем сумма противоположных углов < ВСМ + < ВКМ=90+90=180°, и другие противоположные углы < КВС + < КМС=360-180=180° (сумма углов четырехугольника равна 360°). Следовательно этот четырехугольник можно вписать в окружность (суммы его противоположных углов равны 180°). Углы МКС и МВС являются вписанными в окружность и опирающимися на одну дугу МС, значит эти углы равны.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili