
Вопрос задан 01.12.2018 в 23:58.
Предмет Геометрия.
Спрашивает Баранов Евгений.
Докажите, что если а>б>0, то треугольник состоронами а в квадрате+б в квадрате, а в
квадрате-б в квадрате и 2аб прямоугольный. Определите длины катетов этого треугольника

Ответы на вопрос

Отвечает Сорокина Настя.
Т.к. a > b, то a² - b² - катет и 2ab - тоже катет. Тогда a² + b² - гипотенуза:
(a² + b²)² = (2ab)²
a⁴ + 2a²b² + b⁴ = 4a²b²
a⁴ - 2a²b² + b⁴ = 0
(a² - b²)² = 0
a² = b²
a = b
Данное равенство невозможно по условию, отсюда следует, что a² + b² > 2ab
Для теоремы Пифагора будет справедливо тождество:
(a² + b²)² = (a² - b²)² + (2ab)²
a⁴ + 2a²b² + b⁴ = a⁴ - 2a²b² + b⁴ + 4a²b²
a⁴ + 2a²b² + b⁴ = a⁴ + 2a²b² + b⁴
0 = 0.
По обратной теореме Пифагора следует, что данный треугольник прямоугольный. Тогда сторона, равная a² - b² и сторона, равная 2ab - катеты.
Ответ: a² - b², 2ab.
(a² + b²)² = (2ab)²
a⁴ + 2a²b² + b⁴ = 4a²b²
a⁴ - 2a²b² + b⁴ = 0
(a² - b²)² = 0
a² = b²
a = b
Данное равенство невозможно по условию, отсюда следует, что a² + b² > 2ab
Для теоремы Пифагора будет справедливо тождество:
(a² + b²)² = (a² - b²)² + (2ab)²
a⁴ + 2a²b² + b⁴ = a⁴ - 2a²b² + b⁴ + 4a²b²
a⁴ + 2a²b² + b⁴ = a⁴ + 2a²b² + b⁴
0 = 0.
По обратной теореме Пифагора следует, что данный треугольник прямоугольный. Тогда сторона, равная a² - b² и сторона, равная 2ab - катеты.
Ответ: a² - b², 2ab.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili