
Вопрос задан 01.12.2018 в 11:42.
Предмет Геометрия.
Спрашивает Ладыгина Кристина.
Докажите, что биссектрисы внешних углов при вершинах А и Б и биссектриса угла С пересекаются в
одной точке

Ответы на вопрос

Отвечает Бессмертный Артём.
Пусть биссектрисы внешних углов при вершинах A и B пересекаются в точке O .
Тогда d(O ; AC) =d(O ; AB) = d(O ; BC) б символом d(O ; ) обозначено расстояние от точки O до прямых содержащих стороны треугольника .
Из равенства d(O; AC) = d(O ; BC) :
заключаем , что точка лежит на биссектрисе угла C(по обратной теореме о биссектрисе
угла C ; <OCB =<OCA . Точка O один из центров вневписанных окружностей .
Тогда d(O ; AC) =d(O ; AB) = d(O ; BC) б символом d(O ; ) обозначено расстояние от точки O до прямых содержащих стороны треугольника .
Из равенства d(O; AC) = d(O ; BC) :
заключаем , что точка лежит на биссектрисе угла C(по обратной теореме о биссектрисе
угла C ; <OCB =<OCA . Точка O один из центров вневписанных окружностей .


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili