Вопрос задан 16.11.2018 в 23:14. Предмет Геометрия. Спрашивает Бец Арина.

Боковые грани пирамиды наклонены к основанию под углом 45 градусов, в основании - треугольник со

сторонами 39см, 39см и 30. Найти объем. В треугольной пирамиде стороны основания 3м,3м и 4м. Все боковые ребра равны по 3 метра. Обьем нужно найти.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Моспан Полина.

Будем считать основанием треугольник со сторонами 3, 3, 4.
По формуле площади S = abc/(4R), где R - радиус описанной окружности.
По формуле Герона S = sqrt(5*2*2*1) = 2sqrt(5).
Отсюда R = 3*3*4/(4*2sqrt(5))=9/2/sqrt(5).
Так как боковые ребра равны, то центр описанной окружности - основание высоты пирамиды.
Пусть h - высота, тогда:
h^2 + R^2 = 3^2
h^2 + 81/20 = 9
h^2 = 9 - 81/20 = 99/20
Отсюда V = 1/3*(99/20)*(2sqrt(5)) = 3,3sqrt(5)

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос