
Радиус основания цилиндра равен 6 ,а радиус основания конуса равен 9. Образующая цилиндра равна
высоте конуса. Найдите отношение объема конуса к объему цилиндра. напишите объяснения.

Ответы на вопрос

V конуса = 1/3 *h*pi*9*9
Запишем как дробь (1/3 *h*pi*9*9)/(h*pi*6*6)
Сократим (1/3 *9*9)/(6*6) = (3*9)/(6*6) = 9/12 = 0,75



Problem Analysis
We are given the radius of the base of a cylinder (6) and the radius of the base of a cone (9). We are also told that the slant height of the cone is equal to the height of the cylinder. We need to find the ratio of the volume of the cone to the volume of the cylinder.Solution
To find the ratio of the volume of the cone to the volume of the cylinder, we need to calculate the volumes of both shapes and then divide the volume of the cone by the volume of the cylinder.Calculating the Volume of the Cone
The volume of a cone can be calculated using the formula: V = (1/3) * π * r^2 * h, where V is the volume, π is a mathematical constant approximately equal to 3.14159, r is the radius of the base, and h is the height or slant height of the cone.In this case, we are given that the slant height of the cone is equal to the height of the cylinder. Let's assume the height of the cylinder is h. Therefore, the height of the cone is also h.
Using the given radius of the base of the cone (9) and the height of the cone (h), we can calculate the volume of the cone.
Calculating the Volume of the Cylinder
The volume of a cylinder can be calculated using the formula: V = π * r^2 * h, where V is the volume, π is a mathematical constant approximately equal to 3.14159, r is the radius of the base, and h is the height of the cylinder.In this case, we are given the radius of the base of the cylinder (6) and the height of the cylinder (h). We can calculate the volume of the cylinder using these values.
Finding the Ratio
To find the ratio of the volume of the cone to the volume of the cylinder, we divide the volume of the cone by the volume of the cylinder.Let's calculate the volumes and find the ratio.
Calculation
Given: - Radius of the base of the cylinder (r_cylinder) = 6 - Radius of the base of the cone (r_cone) = 9 - Height of the cylinder (h_cylinder) = h_coneVolume of the cone (V_cone) = (1/3) * π * r_cone^2 * h_cone Volume of the cylinder (V_cylinder) = π * r_cylinder^2 * h_cylinder
Substituting the given values: V_cone = (1/3) * π * 9^2 * h_cone V_cylinder = π * 6^2 * h_cylinder
To find the ratio, we divide V_cone by V_cylinder: Ratio = V_cone / V_cylinder
Now, let's calculate the volumes and the ratio.
Calculation Results
Using the given values, we can calculate the volumes and the ratio as follows:Volume of the cone (V_cone) = (1/3) * π * 9^2 * h_cone Volume of the cylinder (V_cylinder) = π * 6^2 * h_cylinder
Substituting the values: V_cone = (1/3) * π * 81 * h_cone V_cylinder = π * 36 * h_cylinder
Simplifying: V_cone = 27π * h_cone V_cylinder = 36π * h_cylinder
The ratio is given by: Ratio = V_cone / V_cylinder = (27π * h_cone) / (36π * h_cylinder)
Simplifying: Ratio = 27/36 = 3/4
Answer
The ratio of the volume of the cone to the volume of the cylinder is 3:4.Please let me know if I can help you with anything else.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili