Вопрос задан 14.08.2018 в 20:38. Предмет Геометрия. Спрашивает Карпенко Даня.

в прямоугольной параллелепипеде стороны основания 6 и 8см, а диагональ наклона к плоскости

основания под углом 60 градусов. определите длину бокового ребра.Помогите пожалуйста*
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Привалова Анна.
Сначала тебе надо провести перпендикуляр в точно О и потом найти радиус, а дальше ты там поймешь)
Подставишь значения и по теореме Пифагора решишь))
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Calculation of the Length of the Side of a Rectangular Parallelepiped

To determine the length of the side of a rectangular parallelepiped, we need to use the given information about the dimensions of the base and the angle of inclination of the diagonal to the base.

Given: - Length of one side of the base = 6 cm - Length of the other side of the base = 8 cm - Angle of inclination of the diagonal to the base = 60 degrees

To find the length of the side of the rectangular parallelepiped, we can use trigonometric ratios. Let's denote the length of the side of the parallelepiped as x.

Using the given information, we can form a right triangle with the diagonal of the base as the hypotenuse, one side of the base as the adjacent side, and the length of the parallelepiped as the opposite side.

We can use the cosine function to relate the adjacent side, the hypotenuse, and the angle of inclination:

cos(60 degrees) = adjacent side / hypotenuse

Since the adjacent side is the length of one side of the base (6 cm) and the hypotenuse is the length of the diagonal, we can rewrite the equation as:

cos(60 degrees) = 6 cm / diagonal

Simplifying the equation, we have:

diagonal = 6 cm / cos(60 degrees)

Now, we can find the length of the diagonal using the cosine function:

diagonal = 6 cm / 0.5 (cos(60 degrees) = 0.5)

diagonal = 12 cm

The length of the diagonal is 12 cm.

Next, we can use the Pythagorean theorem to relate the diagonal, the length of the parallelepiped, and the side of the base:

diagonal^2 = length of parallelepiped^2 + side of base^2

Substituting the values we have:

12 cm^2 = x^2 + 8 cm^2

Simplifying the equation, we have:

144 cm^2 = x^2 + 64 cm^2

x^2 = 144 cm^2 - 64 cm^2

x^2 = 80 cm^2

Taking the square root of both sides, we find:

x = √80 cm

Simplifying the square root, we have:

x ≈ 8.94 cm

Therefore, the length of the side of the rectangular parallelepiped is approximately 8.94 cm.

Please note that the calculations are based on the given information and assumptions about the shape of the parallelepiped.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос