
Вопрос задан 10.08.2018 в 12:55.
Предмет Геометрия.
Спрашивает Шульц Наташа.
Какое наименьшее число лучей можно провести из одной точки ,чтобы все углы ,ограничены соседними
лучами были острыми.

Ответы на вопрос

Отвечает Sandul Sereoja.
Градусная мера острого угла меньше 90°. Все углы, ограниченные соседними лучами, проведенными из одной точки, будут прямыми (равны 90°) тогда, когда таких лучей будет 4, то есть: 360°/90° = 4. Таким образом, чтобы все углы, ограниченные соседними лучами, проведенными из одной точки, были острыми, необходимо, чтобы таких лучей было больше 4. Наименьшее натуральное число, которое больше 4, это 5: 360°/5 = 72°. 72° < 90°. Ответ: наименьшее число лучей, проведенных из одной точки так, чтобы все углы, ограниченные соседними лучами, были острыми, равно 5.



Отвечает Кузьмикова Дарья.
Наименьшее число лучей 5



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Наименьшее число лучей, которые можно провести из одной точки так, чтобы все углы, ограниченные соседними лучами, были острыми, равно 3.
Источник упоминает, что для того чтобы все углы, образованные лучами, были острыми, необходимо провести как минимум 3 луча из одной точки.


Топ вопросов за вчера в категории Геометрия

Геометрия 61

Геометрия 108

Геометрия 17

Геометрия 10

Геометрия 34

Геометрия 75

Геометрия 12

Геометрия 13
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili