
Найти периметр ромба с диагоналями 10 м и 2 корень из 11м,


Ответы на вопрос

2√11:2=√11(половина второй диагонали)
по теореме пифагора: х²=5·5+√11·√11
х=√36
х=6
периметр тогда будет равен: (6+6)·2=24 см



Периметр ромба можно найти, зная длины его диагоналей. Для ромба с диагоналями 10 м и 2√11 м, мы можем воспользоваться следующей формулой для нахождения периметра:
Периметр ромба = 4 * a,
где "a" - длина стороны ромба.
Для нахождения "a" мы можем воспользоваться формулой Пифагора, так как диагонали ромба делят его на четыре прямоугольных треугольника.
Мы знаем, что в прямоугольном треугольнике гипотенуза равна диагонали ромба, а катеты равны половине его диагоналей. Таким образом, у нас есть два прямоугольных треугольника:
1) С гипотенузой 10 м и катетом "a/2". 2) С гипотенузой 2√11 м и катетом "a/2".
Применяя теорему Пифагора к каждому треугольнику, мы получаем следующие уравнения:
(1/2 * a)^2 + (1/2 * a)^2 = 10^2, (1/2 * a)^2 + (1/2 * a)^2 = (2√11)^2.
Упрощая и решая эти уравнения, мы находим значение "a":
(1/4 * a^2) + (1/4 * a^2) = 100, (1/4 * a^2) + (1/4 * a^2) = 4 * 11.
1/2 * a^2 = 100, 1/2 * a^2 = 44.
a^2 = 200, a^2 = 88.
a = √200, a = √88.
a = 10√2 м, a = 2√22 м.
Теперь мы можем найти периметр ромба, подставив найденное значение "a" в формулу для периметра:
Периметр ромба = 4 * a, Периметр ромба = 4 * 10√2 м, Периметр ромба = 40√2 м.
Периметр ромба = 4 * 2√22 м, Периметр ромба = 8√22 м.
Таким образом, периметр ромба с диагоналями 10 м и 2√11 м равен 40√2 м или 8√22 м.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili