Вопрос задан 15.11.2023 в 19:03. Предмет Геометрия. Спрашивает Мирная Анжелика.

В прямоугольном параллелепипеде в основании лежит квадрат со стороной 4см. Найдите диагональ

параллелепипеда, если высота 2см.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Смирнов Валентин.
Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений:

d² = a² + b² + c² Так как основание квардат то d²=4²+4²+2²=36 d=6

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения данной задачи мы можем воспользоваться теоремой Пифагора.

По условию, в основании параллелепипеда лежит квадрат со стороной 4 см. Поэтому длина одной из сторон основания равна 4 см.

Также, по условию, высота параллелепипеда равна 2 см.

Рассмотрим поперечное сечение параллелепипеда, проходящее через его высоту. Это сечение будет прямоугольным треугольником, у которого один катет равен 4 см (сторона основания) и гипотенуза равна диагонали параллелепипеда.

Применяя теорему Пифагора, найдем длину гипотенузы:

гипотенуза^2 = катет^2 + катет^2 гипотенуза^2 = 4^2 + 4^2 гипотенуза^2 = 16 + 16 гипотенуза^2 = 32

Извлекая квадратный корень из обеих частей уравнения, получим:

гипотенуза = √32

Таким образом, диагональ параллелепипеда равна √32 см, что примерно равно 5,66 см (округляя до сотых).

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для начала, найдем диагональ основания прямоугольного параллелепипеда, который является квадратом со стороной 4 см. Так как квадрат - это прямоугольник с равными сторонами, то диагональ можно найти по теореме Пифагора.

Для нахождения диагонали основания, обозначим ее за d, а сторону квадрата за a (a=4 см). Тогда по теореме Пифагора имеем:

d² = a² + a² = 8² = 64 d = √64 = 8 см

Теперь найдем диагональ самого прямоугольного параллелепипеда. Для этого применим теорему Пифагора к треугольнику, образованному высотой (h=2 см), диагональю основания (d=8 см) и диагональю параллелепипеда (D).

D² = d² + h² = 8² + 2² = 64 + 4 = 68 D = √68 = 8.246 см (приближенно)

Таким образом, диагональ параллелепипеда примерно равна 8.246 см.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос