
В1. В равнобедренной трапеции высота, проведенная ИЗ вершины тупого угла, делит большее основание
на дваотрезка, больший из которых равен 26 см. Найдите пло-щадь трапеции, если ее высота равна 10 см.

Ответы на вопрос

Ответ:Высота равнобедренной трапеции,которая проведена из тупого угла,делит основание к которому проведена на 2 отрезка,БОльший из которых равен полусумме оснований,меньший-их разности
Площадь трапеции-произведение полусуммы оснований на высоту
S=26•10=260 cм в квадрате
Объяснение:



Для решения задачи найдем длины оснований трапеции, затем используем формулу для нахождения площади трапеции.
Обозначим основания трапеции как \( a \) (меньшее основание) и \( b \) (большее основание). По условию задачи, большее основание делится высотой, проведенной из вершины тупого угла, на два отрезка, больший из которых равен 26 см. Таким образом, получаем уравнение:
\[ b = 2 \cdot 26 = 52 \, \text{см} \]
Теперь у нас есть длины обоих оснований \( a \) и \( b \), а также высота \( h = 10 \, \text{см} \).
Площадь трапеции вычисляется по формуле:
\[ S = \frac{1}{2} \cdot (a + b) \cdot h \]
Подставим известные значения:
\[ S = \frac{1}{2} \cdot (a + 52) \cdot 10 \]
Так как трапеция равнобедренная, то её основания равны, т.е. \( a = b \). Подставим это в уравнение:
\[ S = \frac{1}{2} \cdot (a + a) \cdot 10 \]
Упростим:
\[ S = a \cdot 10 \]
Теперь подставим значение \( b = 52 \) из первого уравнения:
\[ S = 52 \cdot 10 = 520 \, \text{см}^2 \]
Итак, площадь равнобедренной трапеции равна 520 квадратным сантиметрам.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия








Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili