Вопрос задан 07.11.2023 в 10:01. Предмет Геометрия. Спрашивает Семёнова Дарья.

Один из острых углов прямоугольного треугольника в 2 раза меньше второго, а сумма гипотенузы и

меньшего катета 12,4 см. найдите гипотенузу. при делении на 3 получается число в периоде.буду очень благодарна за решение ;)​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Яремчук Даша.

Ответ:

открой учебник и прочитай тему ;)

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Пусть один из острых углов прямоугольного треугольника равен x градусов. Тогда второй угол будет равен 2x градусов. По условию задачи, сумма гипотенузы и меньшего катета равна 12,4 см. Зная, что меньший катет это h, а гипотенуза это c, можем записать уравнение: c + h = 12,4 В прямоугольном треугольнике гипотенуза (c) связана с катетами (a и b) по формуле Пифагора: c^2 = a^2 + b^2. Так как один из острых углов в два раза меньше второго, то получаем следующие соотношения: x + 2x + 90 = 180 3x = 90 x = 30 Таким образом, один острый угол равен 30 градусов, а второй 2 * 30 = 60 градусов. Теперь можем записать уравнение Пифагора: c^2 = h^2 + (2h)^2 c^2 = h^2 + 4h^2 c^2 = 5h^2 c = sqrt(5h^2) Следовательно, получаем уравнение: sqrt(5h^2) + h = 12,4 sqrt(5) * h + h = 12,4 (1 + sqrt(5))* h = 12,4 h = 12,4 / (1 + sqrt(5)) h ≈ 2,62 см Теперь можем найти гипотенузу: c = sqrt(5h^2) c = sqrt(5*2,62^2) c ≈ 4,92 см Итак, гипотенуза треугольника равна примерно 4,92 см.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос