Вопрос задан 28.07.2018 в 01:00. Предмет Геометрия. Спрашивает Патієвич Женя.

Решить задачу и сделать рисунок. Отрезок АМ - биссектриса треугольника АВС. Через точку М проведена

прямая, параллельная АС и пересекающая сторону АВ в точке Е. Доказать, что треугольник АМЕ равнобедренный.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Волокушкин Святослав.
Уг САМ=уг АМЕ, тк накрест лежащие
CAM = MAE, по условию
=> AME=EAM, откуда следует, что АМЕ равнобедренный

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given that segment AM is the angle bisector of triangle ABC. A line is drawn through point M, parallel to AC, and intersects side AB at point E. We need to prove that triangle AME is isosceles (or, in other words, that AM = EM).

Proof

To prove that triangle AME is isosceles, we need to show that AM = EM.

Since segment AM is the angle bisector of triangle ABC, we can use the angle bisector theorem to relate the lengths of the sides of triangle ABC. According to the angle bisector theorem, the ratio of the lengths of the sides of triangle ABC is equal to the ratio of the lengths of the corresponding segments of the angle bisector.

Let's denote the length of segment AB as c, the length of segment BC as a, and the length of segment AC as b. Then, according to the angle bisector theorem, we have:

AM/MB = AC/CB Since segment AM is the angle bisector of triangle ABC, we can also use the property that the angle bisector divides the opposite side into segments that are proportional to the adjacent sides. In other words, we have:

AM/MB = AC/CB = b/a Now, let's consider triangle AME. We know that line ME is parallel to line AC. Therefore, we can use the property of parallel lines to establish the following relationship:

AM/ME = AB/EB Since we are trying to prove that triangle AME is isosceles, we want to show that AM = EM. Therefore, we need to prove that AB = EB.

To do this, we can use the fact that line ME is parallel to line AC. This implies that triangles ABC and EBC are similar. Therefore, we have:

AB/EB = AC/BC = b/a Comparing equations and we can see that AM/ME = AB/EB = b/a. This means that AM = ME, which proves that triangle AME is isosceles.

Conclusion

We have shown that triangle AME is isosceles, with AM = EM. This is because segment AM is the angle bisector of triangle ABC, and line ME is parallel to line AC.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос