
Парабола проходит через точки A(0; – 6), B( – 5; – 1), C(1; – 1). Найдите координаты её
вершины.

Ответы на вопрос

Відповідь: Р(-2;-10)
Пояснення




Finding the Vertex of a Parabola
To find the coordinates of the vertex of a parabola, we can use the formula:
x = -b / (2a)
where a and b are the coefficients of the quadratic equation in standard form: ax^2 + bx + c = 0.
In this case, we have three points: A(0, -6), B(-5, -1), and C(1, -1). We can use these points to form a system of equations and solve for the coefficients a and b.
Let's start by finding the equation of the parabola using the point A(0, -6) and the vertex formula.
Solving for the Coefficients
Using the point A(0, -6), we can substitute the values into the equation:
-6 = a(0)^2 + b(0) + c
Simplifying, we get:
-6 = c
Now, let's use the points B(-5, -1) and C(1, -1) to form two more equations.
Using the point B(-5, -1):
-1 = a(-5)^2 + b(-5) + c
Simplifying, we get:
25a - 5b + c = -1 Using the point C(1, -1):
-1 = a(1)^2 + b(1) + c
Simplifying, we get:
a + b + c = -1 Now, we have a system of three equations:
-6 = c (Equation 1)
25a - 5b + c = -1 (Equation 2)
a + b + c = -1 (Equation 3)
We can solve this system of equations to find the values of a, b, and c.
Solving the System of Equations
Substituting Equation 1 into Equations 2 and 3, we get:
25a - 5b - 6 = -1 (Equation 4)
a + b - 6 = -1 (Equation 5)
Simplifying Equation 4, we get:
25a - 5b = 5 (Equation 6)
Subtracting Equation 5 from Equation 6, we eliminate a:
24a - 6b = 6 (Equation 7)
Now, let's solve Equations 5 and 7 simultaneously.
Multiplying Equation 5 by 24, we get:
24a + 24b - 144 = -24 (Equation 8)
Subtracting Equation 7 from Equation 8, we eliminate a:
48b - 138 = -30 (Equation 9)
Simplifying Equation 9, we get:
48b = 108 (Equation 10)
Dividing both sides of Equation 10 by 48, we find:
b = 2.25
Now, substituting the value of b into Equation 5, we can solve for a:
a + 2.25 - 6 = -1
Simplifying, we get:
a = 4.75
Now that we have the values of a and b, we can find the x-coordinate of the vertex using the formula:
x = -b / (2a)
Substituting the values, we get:
x = -2.25 / (2 * 4.75)
Simplifying, we find:
x ≈ -0.237
To find the y-coordinate of the vertex, we substitute the x-coordinate back into the equation of the parabola:
y = ax^2 + bx + c
Substituting the values of a, b, and c we found earlier, we get:
y = 4.75x^2 + 2.25x - 6
Substituting x ≈ -0.237, we find:
y ≈ -6.237
Therefore, the coordinates of the vertex of the parabola passing through the points A(0, -6), B(-5, -1), and C(1, -1) are approximately (-0.237, -6.237).
Please note that the calculations were approximated for simplicity.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili