
В равнобедренном треугольнике АВС основание АС=32 АВ=ВС tgА=5/4 Найдите площадь треульника АВС


Ответы на вопрос




Дано, что основание треугольника АС равно 32, а сторона АВ равна стороне ВС. Также, тангенс угла А равен 5/4.
Так как треугольник АВС является равнобедренным, то его медиана, проведенная из вершины А, будет являться высотой треугольника. Так как медиана равна половине основания, то высота треугольника равна 16 (32/2).
Далее, можно найти величину других сторон треугольника по теореме Пифагора. Пусть сторона АВ (или ВС) равна х, тогда применяя теорему Пифагора, получим:
х^2 + 16^2 = (5/4)^2 * х^2 х^2 + 256 = 25/16 * х^2 16х^2 + 4096 = 25х^2 9х^2 = 4096 х^2 = 4096/9 х = √(4096/9) х ≈ 8
Теперь, найдем площадь треугольника АВС, используя формулу площади треугольника: площадь = (основание * высота) / 2.
Подставляем значения основания и высоты: площадь = (32 * 16) / 2 площадь = 512
Таким образом, площадь треугольника АВС равна 512.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili