Вопрос задан 25.10.2023 в 10:22. Предмет Геометрия. Спрашивает Кузнецова Виктория.

Треугольние с периметром 30 см одна сторона больше другой на 2 см. но меньше третьей на 2 см.

Найдите большую сторону треугольника.​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Богомолов Гордей.

Ответ: 12 см

Объяснение (подробно):

   Примем меньшую сторону АС треугольника АВС равной х. Тогда ВС больше на 2 см и равна х+2. ВС меньше АВ на 2 см, =>

АВ-ВС=2,

АВ-(х+2)=2

АВ=х+4

АС+ВС+АВ=30

х+х+2+х+4=30 =>

х=8

АВ=8+4=12 (см)


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте обозначим стороны треугольника следующим образом:

Пусть x - длина наименьшей стороны треугольника (в см). Тогда одна сторона будет x + 2 см. А другая сторона будет x - 2 см.

Зная, что периметр треугольника равен 30 см, мы можем записать уравнение:

x + (x + 2) + (x - 2) = 30

Решим это уравнение:

3x = 30

Теперь разделим обе стороны на 3, чтобы найти значение x:

x = 30 / 3 x = 10

Таким образом, длина наименьшей стороны треугольника равна 10 см.

Теперь мы можем найти остальные стороны:

  • Одна сторона: x + 2 = 10 + 2 = 12 см.
  • Другая сторона: x - 2 = 10 - 2 = 8 см.

Следовательно, большая сторона треугольника равна 12 см.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос