Вопрос задан 24.10.2023 в 18:10. Предмет Геометрия. Спрашивает Проскура Дмитрий.

Катети прямоугольного триугольника 5 и 12см.Найдите косинус угла, противоположного меньшему катету​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Бойченко Дарья.

Ответ:

Объяснение:

c=√a²+b²=√5²+12²=√25+144=√169=13 см

cosα=b/c=12/13

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для нахождения косинуса угла, противоположного меньшему катету в прямоугольном треугольнике, можно использовать следующую формулу:

cos(θ)=прилегающий катетгипотенуза\cos(\theta) = \frac{\text{прилегающий катет}}{\text{гипотенуза}}

В вашем случае, прилегающий катет равен 5 см, а гипотенуза равна 13 см (по теореме Пифагора: c2=a2+b2c^2 = a^2 + b^2, где cc - гипотенуза, aa и bb - катеты). Теперь мы можем найти косинус угла:

cos(θ)=513\cos(\theta) = \frac{5}{13}

Таким образом, косинус угла, противоположного меньшему катету, равен 513\frac{5}{13}.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос