Вопрос задан 23.10.2023 в 03:44. Предмет Геометрия. Спрашивает Підгаєцький Роман.

основи трапеції дорівнюють 20 см і 60 см, а діагоналі - 48 см і 36 см. обчислити периметр

трикутників, вершини яких є точка перетину діагоналей й кінці основ
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Зенько Виктория.

Відповідь: 41 см, 123 см.

Пояснення:

розв'язання завдання додаю. 2 способи.



0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте розглянемо трикутники, вершини яких є точкою перетину діагоналей і кінцями основи трапеції.

Перший трикутник (ABC) може бути утворений основою трапеції та однією з діагоналей. Для цього ми можемо використовувати трикутник ABC з основою AB (20 см) та діагоналлю AC (48 см). За допомогою теореми Піфагора ми можемо знайти довжину BC:

BC^2 = AC^2 - AB^2 BC^2 = (48 см)^2 - (20 см)^2 BC^2 = 2304 см^2 - 400 см^2 BC^2 = 1904 см^2

BC = √1904 см BC ≈ 43.68 см

Другий трикутник (ADC) утворюється другою діагоналлю AD (36 см) та іншою частиною основи CD. CD дорівнює BC, оскільки обидві діагоналі розділяються точкою перетину навпіл. Тож довжина CD також дорівнює приблизно 43.68 см.

Тепер ми можемо обчислити периметр кожного з цих трикутників:

  1. Трикутник ABC: Периметр ABC = AB + AC + BC Периметр ABC ≈ 20 см + 48 см + 43.68 см ≈ 111.68 см

  2. Трикутник ADC: Периметр ADC = AD + AC + CD Периметр ADC ≈ 36 см + 48 см + 43.68 см ≈ 127.68 см

Таким чином, периметр першого трикутника ABC приблизно дорівнює 111.68 см, а периметр другого трикутника ADC приблизно дорівнює 127.68 см.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос