Вопрос задан 05.10.2023 в 03:09. Предмет Геометрия. Спрашивает Вайс Элла.

Сумма катетов прямоугольного треугольника равна 16 см. Найди длины катетов этого треугольника, при

которых площадь треугольника будет наибольшей. Катеты треугольника должны быть равны __см и __см (Пиши длины сторон в возрастающей последовательности). Максимальная площадь равна_см².
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Васильева Елизавета.

Ответ:

8 и 8 см; 32см2

Объяснение:

представляем себе 2 идентичных прямоугольных треугольника, то есть, четырехугольник. мы знаем, что s четерехугольника это s=a*b

Методом подбора узнаем, что наибольшая площадь достигается при значениях 8 и 8 см ( при условии, что их сумма равна 16)

Тогда s = 64

Но это площадь 2 одинаковых треугольников

64/2=32

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи, мы можем воспользоваться методом оптимизации. Пусть один катет прямоугольного треугольника будет равен x см, а другой - 16 - x см, так как сумма катетов равна 16 см.

Теперь давайте найдем выражение для площади треугольника через длины катетов x и (16 - x):

Площадь треугольника S = (1/2) * x * (16 - x)

Теперь мы можем найти производную этой функции по x и найти её нули для нахождения максимума:

dS/dx = (1/2) * (16 - 2x)

Теперь приравняем это выражение к нулю и решим уравнение:

(1/2) * (16 - 2x) = 0

Умножим обе стороны на 2:

16 - 2x = 0

Теперь выразим x:

2x = 16

x = 8

Таким образом, один катет равен 8 см, а другой - 16 - 8 = 8 см.

Площадь треугольника при таких длинах катетов будет наибольшей:

S = (1/2) * 8 * 8 = 32 см²

Итак, катеты треугольника должны быть равны 8 см и 8 см (в возрастающей последовательности), а максимальная площадь равна 32 см².

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос