
длины всех сторон двух подобных , но не равных друг другу треугольников целые числа . Чему может
быть равен периметр большего , если в одном треугольнике есть длины 2 и 6 , а в другом треугольнике есть сторона длины 3 . найдите все варианты 

Ответы на вопрос

Длины всех сторон двух подобных , но не равных друг другу треугольников целые числа . Чему может быть равен периметр большего , если в одном треугольнике есть длины 2 и 6 , а в другом треугольнике есть сторона длины 3 . Найдите все варианты
Объяснение:
1) В треугольнике с со сторонами 2, 6 , третья сторона может быть равной 5,6,7 согласно теореме о неравенстве сторон треугольника
( если х-третья сторона , то x+2>6 и 6+2>x ⇒ 4<х<8).
2)Тк треугольники подобны и известна одна сторона второго треугольника , то коэффициент подобия может быть равен
а) к=3:2=3/2 , или б) к=3:6=1/2.
Случай а) невозможен для чисел 5,7 из-за условия " Длины всех сторон двух ...... треугольников целые числа...".
Проверим для стороны равной числу 6 : стороны второго треугольника будут равны 6*(3/2)=9 и 2*(3/2)=3. Получили
1 треугольник , стороны 6,6,2 , Р=14 ед,
2 треугольник , стороны 9,9,3 , Р=21 ед.
Случай б) невозможен для чисел 5,7 из-за условия " Длины всех сторон двух ...... треугольников целые числа...".
Проверим для стороны равной числу 6 : стороны второго треугольника будут равны 6*(1/2)=3 и 2*(1/2)=1. Получили
1 треугольник , стороны 6,6,2 , Р=14 ед,
2 треугольник , стороны 3,3,1 , Р=7 ед.
Ответ .Периметр большего треугольника 21 ед.
=============================
Теорема о неравенстве треугольника " каждая сторона треугольника всегда меньше сумме двух других его сторон."
orjabinina



Давайте обозначим стороны треугольников через , и , где и - стороны меньшего треугольника, а - сторона большего треугольника.
Мы знаем, что треугольники подобны, следовательно, отношения длин соответствующих сторон равны. Это дает нам следующее уравнение:
Мы также знаем, что стороны треугольников являются целыми числами. Поскольку и - стороны меньшего треугольника, и они равны 2 и 6, соответственно, мы можем записать:
Теперь мы можем использовать это, чтобы найти значение :
Отсюда следует, что .
Теперь мы можем найти периметр большего треугольника:
Таким образом, периметр большего треугольника равен 11.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili