
Сторона прямокутника дорівнює 8 см і утворює з діагоналлю кут 30°. Знайдіть площу прямокутника


Ответы на вопрос

Відповідь:
32 см
Пояснення:



Для знаходження площі прямокутника зі стороною 8 см і кутом 30° між стороною та діагоналлю, спершу знайдемо довжину діагоналі, використовуючи тригонометричні функції.
Знаючи сторону прямокутника і кут між стороною та діагоналлю, можна використовувати тригонометричні функції. У нашому випадку, ми маємо:
Сторона прямокутника (a) = 8 см Кут між стороною та діагоналлю (θ) = 30°
Діагональ (d) можна знайти за допомогою тригонометричних функцій. Косинус кута дорівнює відношенню сторони до діагоналі:
cos(30°) = a / d
d = a / cos(30°) d = 8 см / cos(30°) d ≈ 9.237 см (округлено до трьох знаків після коми)
Тепер, коли ми знайшли діагональ, ми можемо знайти площу прямокутника, використовуючи формулу для площі прямокутника:
Площа (S) = a * b
Де a і b - це сторони прямокутника. У нашому випадку, одна зі сторін дорівнює 8 см (як ми вже знаємо), а інша сторона дорівнює діагоналі:
S = 8 см * 9.237 см ≈ 73.896 см²
Отже, площа цього прямокутника приблизно дорівнює 73.896 квадратним сантиметрам.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili