Вопрос задан 20.07.2018 в 05:27. Предмет Геометрия. Спрашивает Пергушев Кирилл.

Площадь прямоугольного треугольника равна 8 под корнем 3 . один из его острых углов равен 30. найти

гипотенузу
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Бисимбаев Алихан.

Обозначим a,b - катеты треугольника, с- гипотенуза, угол между a и c равен 30°.
Тогда можно записать площадь треугольника в виде S= \frac{1}{2}ab \rightarrow a= \frac{2S}{b}
Поскольку катет b лежит против угла в 30°, то гипотенуза имеет размер, равный удвоенному размеру катета. Далее запишем выражение для a по теореме Пифагора:
 c=2b
\\a= \sqrt{c^2-b^2}= \sqrt{(2b)^2-b^2}= \sqrt{4b^2-b^2}= \sqrt{3b^2}=b \sqrt{3}; \\ 
b \sqrt{3}= \frac{2S}{b} \rightarrow b^2 \sqrt{3}=2S; S=8 \sqrt{3} \rightarrow b^2 \sqrt{3}=16 \sqrt{3}; b^2=16; \\  b=4 \rightarrow c=8

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос