
Найдите радиус окружности, описанной вокруг прямоугольного треугольника, вершины которого имеют
координаты А(5; - 3) и В(6; - 5).

Ответы на вопрос

Смотри АВ гипотенуза, R=АВ/2.




Для нахождения радиуса окружности, описанной вокруг прямоугольного треугольника, нам понадобится найти его центр и радиус.
Прямоугольный треугольник имеет один прямой угол (90 градусов), поэтому его описанная окружность - это окружность, проходящая через вершины прямого угла (перпендикуляр к гипотенузе).
Для начала, найдем середину гипотенузы, которая будет являться центром окружности. Середина гипотенузы это точка, которая находится посередине между вершинами прямого угла. Для этого сложим координаты вершин A и B, и разделим результат на 2.
Середина гипотенузы: x-координата = (5 + 6) / 2 = 11 / 2 = 5.5 y-координата = (-3 - 5) / 2 = -8 / 2 = -4
Теперь найдем расстояние от центра окружности до одной из вершин прямого угла (A или B). Это будет равно радиусу окружности.
Радиус окружности = расстояние от центра до вершины A (или B).
Расстояние между двумя точками (x1, y1) и (x2, y2) можно найти по формуле:
Расстояние = √((x2 - x1)^2 + (y2 - y1)^2)
Таким образом, радиус окружности:
Расстояние = √((6 - 5.5)^2 + (-5 - (-4))^2) Расстояние = √(0.5^2 + 1^2) Расстояние = √(0.25 + 1) Расстояние = √1.25
Приближенное значение: Расстояние ≈ 1.118
Таким образом, радиус окружности, описанной вокруг прямоугольного треугольника, составляет около 1.118 (округлим до трех десятичных знаков).


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili