Вопрос задан 16.07.2018 в 22:22. Предмет Геометрия. Спрашивает Жаңбырбай Ануар.

Максимум баллов! Основанием пирамиды является равнобедренный треугольник, боковая сторона которого

равна a, а угол между боковыми сторонами – β. Все двугранные углы при основании пирамиды равны φ. Найдите площадь полной поверхности конуса, вписанного в эту пирамиду.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Вахапова Яна.

R через сторону основания и противолежащий угол неизвестна, поэтому я ее выведу
есть формула радиуса через стороны а и b в равнобедренном Δ
r=(b/2)*√((2a-b)/(2a+b))
b=2*a*sinβ/2

тогда r=a*sinβ/2*√((1-sinβ/2)/(1+sinβ/2))
образующая конуса L=r/cosω
L=a*sinβ/2*√((1-sinβ/2)/(1+sinβ/2))/cosω
S(пол)=S(осн)+S(бок)=pirL+pir^2=pir*(r/cosω+r)=pir^2(1+1/cosω)=
=pi*(a*sinβ/2)^2*(1-sinβ/2)(1+1/cosω)/(1+sinβ/2)

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос