
Вопрос задан 15.07.2018 в 21:54.
Предмет Геометрия.
Спрашивает Колочьян Кирилл.
Точки T и P лежат соответственно на сторонах AB и BC равностороннего треугольника ABC,
BT:AT=BP:PC=1:2. Докажите, что в четырехугольник ATPC можно вписать окружность

Ответы на вопрос

Отвечает Голоктионова Настя.
Легко!!!
1)треугольник равносторонний углы по 60, стороны равны, по теореме косинусов найдем ТР
ТР²= х²(ТВ)+х²(ВР)-2*х*х*косинус 60(1/2)=х
2) так как стороны равны то и АС=3х
3) если суммы противоположных сторон равны то можно вписать окружность, у нас получилась равнобокая трапеция со сторонами АТ=РС=2х
ТР=х,АС=3х
х+3х=2х+2х
4х=4х, значит в эту трапецию можно вписать окружность


Топ вопросов за вчера в категории Геометрия

Геометрия 61

Геометрия 108

Геометрия 17

Геометрия 10

Геометрия 34

Геометрия 75

Геометрия 12

Геометрия 13
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili