
Определите угол при вершине осевого сечения конуса, если разверткой его боковой поверхности
является сектор с дугой, равной 90 градусов. Решение поподробнее пожалуйста.

Ответы на вопрос

Сектор - часть круга. Длина дуги сектора вычисляется по формуле:
L=π*r*n/180°.
В нашем случае n=90°, L=π*r/2. Заметим, что в этой формуле
r = l - образующая конуса, а L - это длина окружности нашего конуса. Радиус окружности основания конуса находим поформуле: L=2π*R или в нашем случае π*r/2=2π*R, отсюда R=π*r/(2*2π)=r/4.
Теперь рассмотрим осевое сечение конуса.
Это равнобедренный треугольник с боковыми сторонами - образующей конуса и основанием - диаметром окружности основания конуса.
Причем высота конуса SH - это и биссектриса и медиана этого треугольника.
В прямоугольном треугольнике SHC синус угла HSC равен отношению
противолежащего катета (R) к гипотенузе (l=r) или Sin(<HSC)=(r/4)/r=1/4.
Заметим, что <HSC - это половина искомого угла при вершине конуса (так как SH - биссектриса).
По формуле Sinα=2Sin(α/2)*Cos(α/2) найдем искомый угол α.
Cosα=√(1-sin²α)=√(1-1/16)=√15/4.
Sinα=2*(1/4)*(√15/4)=√15/8.
Ответ: угол при вершине конуса равен arcsin(√15/8).
α≈29°
Можно найти угол при вершине по теореме косинусов:
Cosα=(a²+b²-c²)/2ab, где угол α - угол между сторонами a и b.
В нашем случае a=b=r, c=2R=r/2.
Тогда Cosα=(2r²-r²/4)/2r²=7r²/8r²=0,875. α=arccos0,875 или α≈29°.



Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili