Вопрос задан 13.07.2023 в 15:13. Предмет Геометрия. Спрашивает Бессмертная Татьяна.

1 задача. Дано: тругольник АВС = треугольнику MPK Угол А= углу М Угол В= углу P ВС= 5см АС= 4см

МР= 6см Найти: Периметр треугольника МРК? 2 Задача. Отрезоки треугольника ВС и CD соеденены точкой пересечения О ( и деляться пополам) АС= 14см СD= 18см Найти: BD?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Соболева Диана.

Ответ:

привет, всегда рада помочь, решение во вложении))


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
  1. Периметр треугольника МРК:

Для нахождения периметра треугольника МРК, сначала нам нужно найти сторону КР.

Из условия задачи известно, что треугольник АВС равен треугольнику МПК. Значит, угол С также равен углу К. Так как сумма углов в треугольнике равна 180 градусов, можем записать:

Угол А + Угол В + Угол С = 180 градусов Угол М + Угол P + Угол К = 180 градусов

Так как угол А = угол М и угол В = угол P, можем записать:

Угол М + Угол P + Угол С = 180 градусов

Угол М + Угол P + Угол М = 180 градусов 2 * (Угол М + Угол P) = 180 градусов Угол М + Угол P = 180 градусов / 2 Угол М + Угол P = 90 градусов

Таким образом, угол К равен 90 градусов.

Теперь посмотрим на прямоугольный треугольник МРК. У нас есть катеты МР = 6 см и КР = 4 см. Найдем гипотенузу МК с помощью теоремы Пифагора:

МК² = МР² + КР² МК² = 6² + 4² МК² = 36 + 16 МК² = 52

МК = √52 ≈ 7,211 см

Теперь, чтобы найти периметр треугольника МРК, просто сложим длины его сторон:

Периметр = МР + КР + МК Периметр ≈ 6 см + 4 см + 7,211 см Периметр ≈ 17,211 см

Ответ: Периметр треугольника МРК ≈ 17,211 см

  1. Найдем BD:

У нас есть отрезки ВС и CD, которые делятся точкой О пополам. Значит, О является серединой отрезка BD. Из этого следует, что BD равен сумме ВС и CD, разделенной на 2:

BD = (ВС + CD) / 2 BD = (14 см + 18 см) / 2 BD = 32 см / 2 BD = 16 см

Ответ: BD = 16 см

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос