
Знайдіть радіус кола описаного навколо трикутника зі сторонами 30 см, 26 см та 8 см


Ответы на вопрос

Дано :
a, b, c - стороны треугольника ; R - радиус описанной около треугольника окружности.
а = 8 см, b = 30 см, c = 26 см.
Найти :
R = ?
Решение :
Найдём площадь треугольника по формуле Герона -
, где p - полупериметр.
(см).
(см²).
Найдём радиус описанной окружности -
(см).
Ответ :
16,25 см.




Для знаходження радіуса кола, описаного навколо трикутника, можемо використати формулу косинусного правила. Косинусний правило гласить:
де , , - сторони трикутника, - протилежний кут до сторони .
У нашому випадку, см, см і см (тому що це сторона навколішнього кола, описаного навколо трикутника).
Знаходимо кут за допомогою закону косинусів:
Підставляючи дані:
Використовуючи калькулятор, отримуємо:
Знаючи значення косинуса кута , ми можемо знайти сам кут :
Знову використовуючи калькулятор, отримуємо:
Тепер, ми можемо знайти радіус кола за допомогою формули для описаного кола трикутника:
Підставляючи дані:
Знову використовуючи калькулятор:
Отже, радіус кола, описаного навколо даного трикутника, приблизно дорівнює 23.82 см.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili