Вопрос задан 08.07.2023 в 18:22. Предмет Геометрия. Спрашивает Корзун Елизавета.

сумма трех неразвернутых углов котрые образовались при пересечении двух прямых равна 240 ° найдите

наименьшый угол между этими прямыми​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Даниил Малиновский.

Ответ:

.....................


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте обозначим наши две пересекающиеся прямые как l1l_1 и l2l_2, а три образовавшихся угла как AA, BB и CC. Мы знаем, что сумма этих трех углов равна 240 градусов:

A+B+C=240A + B + C = 240^\circ

Наименьший угол между прямыми будет между AA и BB или между BB и CC. Допустим, наименьший угол между прямыми соответствует углу AA. Тогда мы можем записать:

Наименьший угол =A = A

С учетом того, что угол AA является внутренним углом, образованным двумя пересекающимися прямыми, мы можем использовать свойство, что внутренние углы, образованные пересекающимися прямыми, суммируются до 180 градусов:

A+C=180A + C = 180^\circ

Отсюда можно выразить CC через AA:

C=180AC = 180^\circ - A

Теперь мы можем подставить это значение CC в исходное уравнение:

A+B+180A=240A + B + 180^\circ - A = 240^\circ

Упростив, получим:

B=60B = 60^\circ

Таким образом, наименьший угол между прямыми равен 60 градусов.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос