
Вопрос задан 12.07.2018 в 03:50.
Предмет Геометрия.
Спрашивает Kuklin Aleksey.
D и E- середины сторон AB и BС треугольника ABC, точки М и N лежат на AC, причем АМ=MN=NC Вектор
CN= вектору а Вектор CE=вектору б Выразить вектор CD, вектор MB, вектор MD через эти векторы. Спасибо за помощь!!!

Ответы на вопрос

Отвечает Дяденко Яна.
По правилу треугольника CD=CB+BD, CD=CA+AD.
Складываем эти равенства и получаем:
2CD=CB+CA+BD+AD. Т.к. точка D - середина стороны АВ, то AD+BD=0. Тогда
2CD=CB+CA, CD=1/2(CB+CA)=1/2(2b+3a)=b+3/2a
MB=MC+CB. Т.к. MN=NC=-a, то МС=-2а,
MB=-2а+2b
MD=MC+CD=-2a+(b+3/2a)=b-1/2a
Везде надо поставить знаки векторов, не забудь.



Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili