
Вопрос задан 11.07.2018 в 14:08.
Предмет Геометрия.
Спрашивает Самсонов Кирилл.
Основание треугольника равно 4.Медиана проведена к основанию , равна корень из 6 минус корень из 2,
а один из углов при основании равен 15 градусов .найти острый угол между медианой и основанием

Ответы на вопрос

Отвечает Смирный Арсений.
Пусть тр-к ABC, медиана - BM
AM = MC = 2
из тр-ка ABM по т sin:
√6 - √2 / (sin15) = 2 / sinABM (1)
sin^2(15) = (1 - cos30) / 2 = (2 - √3)/ 4
возведем обе части (1) в квадрат:
(8 - 2√12) / sin^2(15) = 4 / sin^2(abm)
(8 - 4√3) * 4 / (2 - √3) = 4 / sin^2(abm)
sin^2(abm) = 1 / 4
sin(abm) = +- √2 / 2
∠abm = 135° или = 45°
∠bma = 180 - 15 - abm = 165 - abm
если ∠abm = 135, то ∠bma = 30°
если ∠abm = 45, то ∠bma = 120°
Искомый острый угол в обоих случаях равен 30°
Ответ: 30°.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili