
Найдите отношение двух сторон треугольника, если его медиана, выходящая из их общей вершины,
образует с этими сторонами углы в 30° и 90°. С объяснением досконально и с рисунком Много баллов

Ответы на вопрос

Смотрите на рисунок ...
У сторон АВ и АС общая вершина - А, и через неё и проведём медиану АМ к стороне ВС ...
Будем искать:
АС/АВ = ?
ИЛИ
АВ/АС = ?
Итак ...
Что можно сказать про медиану?
Она делит треугольник на два треугольника, площади которых равны ...
Получаем :
1) Площадь треугольника АВМ = площадь треугольника АМС.
Рассмотрим треугольник ВМА.
Его площадь можно найти по вот такой формуле:
Площадь треугольника ВМА = ½*АВ*АМ*синус угла ВАМ
По условию угол ВАМ равен 30° ...
Площадь треугольника ВМА = ½*АВ*АМ*синус угла в 30°
Синус в 30° равен ½.
Получаем:
Площадь треугольника ВМА = ¼*АВ*АМ.
Теперь посмотрим на треугольник АМС.
Он прямоугольный... А площадь прямоугольного треугольника равна половине произведения его катетов. (В нашем случае АМ и АС - катеты).
Запишем вот так :
Площадь треугольника АМС = ½*АС*АМ..
ПО ВЫШЕ СКАЗАННОМУ В ПУНКТЕ 1 СЛЕДУЕТ, ЧТО :
½*АВ*АМ = ¼*АМ*АС
½*АВ = ¼*АС
АВ = ½*АС ...
Получаем :
АС/АВ = АС/(½*АС) = 1 : ½ = 2.
АВ/АС = (½*АС)/АС = ½.
(ЕСЛИ НЕВЕРНО, ПОЖАЛУЙСТА, ОТМЕТЬТЕ КАК НАРУШЕНИЕ!)




Давайте обозначим треугольник ABC, где A - вершина треугольника, а B и C - концы медианы. У нас есть следующая информация:
- Угол BAC (между медианой и стороной AC) равен 30°.
- Угол ABC (прямой угол между медианой и стороной BC) равен 90°.
Сначала нарисуем это:
css A
/ \
/ \
B /_____\ C
Так как у нас есть угол между медианой и каждой из сторон треугольника, мы можем рассмотреть прямоугольный треугольник BAC:
css A
/|
/ |
B /__| C
Теперь давайте рассмотрим отношение сторон треугольника. Пусть AC - это гипотенуза прямоугольного треугольника BAC, AB - это одна из его катетов, а BC - другой катет.
Мы знаем, что угол BAC равен 30°. Следовательно, угол ABC также равен 60° (так как сумма углов треугольника равна 180°).
Теперь мы можем использовать соотношения в прямоугольном треугольнике BAC, которые связывают катеты и гипотенузу в соответствии с тригонометрией. В данном случае, мы можем использовать тригонометрическую функцию тангенса:
Так как , получаем:
Теперь можем решить это уравнение относительно :
Это означает, что отношение сторон треугольника AB к BC равно .
Итак, отношение двух сторон треугольника AB к BC равно , что можно приблизительно округлить до 0.577 (или ).
Пожалуйста, обратите внимание, что рисунок здесь нельзя визуализировать напрямую, но я старался объяснить каждый шаг подробно.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili