
ОЧЕНЬ СРОЧНО!!! ДАЮ 20 БАЛЛОВ!! Задача:В параллелограмме ABCD косинус угла A равен 1/√5. Найдите
tg B.

Ответы на вопрос

Ответ:
Объяснение:
Дано: ABCD - параллелограмм,
Найти: - ?
Решение: Так как по условию ABCD - параллелограмм, то по определению его противоположные стороны параллельны, тогда
∠A + ∠B = 180° как односторонние углы при параллельных прямых(BC║AD). Так как , то ∠A < 90°.
∠A + ∠B = 180° ⇒ ∠B = 180° - ∠A. По формуле приведения:
cos ∠B = cos(180° - ∠A) = - cos ∠A =
Так как все углы параллелограмма меньше 180° и больше 0°, то синус любого угла параллелограмма больше или равен нулю.
По основному тригонометрическому тождеству:
.
.




Давайте рассмотрим параллелограмм ABCD и обозначим углы следующим образом:
- Угол A: Угол между сторонами AB и AD.
- Угол B: Угол между сторонами AB и BC.
Известно, что косинус угла A равен 1/√5:
cos(A) = 1/√5
Также известно, что в параллелограмме противоположные углы равны, значит:
Угол C = Угол A
Теперь мы можем использовать основное соотношение между косинусом и тангенсом:
cos(A) = 1/√5 = adjacent/hypotenuse
Из этого соотношения мы видим, что противоположная сторона (параллельная стороне BC) равна √5, так как гипотенуза равна 1. Таким образом:
BC = √5
Теперь мы можем применить определение тангенса:
tg(B) = opposite/adjacent = AB/BC
Известно, что сторона AB параллельна стороне CD (так как это параллелограмм), и противоположные стороны параллелограмма равны, значит:
AB = CD
Таким образом:
tg(B) = AB/BC = CD/BC
Теперь мы можем выразить tg(B) через известные значения:
tg(B) = CD/BC = AD/BC (так как AD = CD)
Известно, что AD это одна из сторон параллелограмма, значит:
tg(B) = AD/BC
Но у нас уже есть информация о сторонах параллелограмма:
BC = √5 (как мы выяснили выше) cos(A) = 1/√5
Теперь воспользуемся тригонометрической формулой для тангенса через косинус:
tg(B) = AD/BC = √(1 - cos²(A))/cos(A)
Подставляя известные значения:
tg(B) = √(1 - (1/√5)²)/(1/√5) tg(B) = √(1 - 1/5)/(1/√5) tg(B) = √(4/5)/(1/√5) tg(B) = (√4)/1 tg(B) = 2
Итак, tg(B) = 2.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili