
Найдите площадь прямоугольника, если его периметр равен 16 и одна сторона на 4 больше другой.


Ответы на вопрос

Дано:
Р = 16 - периметр прямоугольника
х - меньшая сторона прямоугольника
х + 4 - большая сторона прямоугольника
Найти:
S - площадь прямоугольника
Решение:
Периметр прямоугольника равен
Р = 2(х + х + 4) = 4х + 8
Найдём величину меньшей стороны прямоугольника
4х + 8 = 16
4х = 8
х = 2
Большая сторона прямоугольника
х + 4 = 2 + 4 = 6
Площадь прямоугольника
S = x · (x + 4) = 2 · 6 = 12
Ответ:
Площадь прямоугольника равна 12



Пусть одна сторона прямоугольника равна x, а другая сторона равна (x + 4).
Периметр прямоугольника равен сумме всех его сторон:
Периметр = 2 * (длина + ширина)
Из условия известно, что периметр равен 16:
16 = 2 * (x + x + 4)
Теперь мы можем решить уравнение для x:
16 = 2 * (2x + 4)
Раскроем скобки:
16 = 4x + 8
Выразим 4x:
4x = 16 - 8 4x = 8
Теперь разделим обе стороны на 4, чтобы найти значение x:
x = 8 / 4 x = 2
Таким образом, одна сторона прямоугольника равна 2, а другая сторона равна (2 + 4) = 6.
Чтобы найти площадь прямоугольника, умножим длину на ширину:
Площадь = длина * ширина Площадь = 2 * 6 Площадь = 12
Итак, площадь прямоугольника равна 12 квадратным единицам.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili