
У прямокутній трапеції точка дотику вписаного у неї кола ділить більшу основу на відрізки 12 і 16
починаючи від вершини прямого кута знайдіть меншу основу трапеції.

Ответы на вопрос

Відповідь:
21
Пояснення:
Відповідь:
Пояснення:
дано: АВСД- прямокутна трапеція, АЕ=12 , ЕД=16 см
Знайти: ВС-?
Рішення:
В чотрикутник можно вписати коло тільки тоді, коли суми протилежних сторін рівні: АД+ВС=АВ+СД.
З властивості дотичних до кола , проведених з однієї точки маємо:
АЕ=АМ , ∠А=90° та ОМ ⊥ АВ , так як ОМ- то є радіус кола. Отже АМОЕ- квадрат зі стороною 12 . Аналогічно ВМ =ВК , ∠В=90° ,ОК ⊥ ВС . Отже МВКО - квадрат зі стороною 12. АВ=АМ+МВ=12+12= 24.
КС=FC, ED=DF( як дотичні)
ΔСОД- прямокутний ( там довгенько доводити на основі подібності трикутників и знання , що ОД і ОС- бісектріси ) та ОF- висота прямокутного трикутника, проведена до бісектриси. По леммі про висоту прямкутного трикутника : ОF²= CF*FD
12²=CF*16
CF=144:16=9
BC=BK+KC=12+9=21




Давайте позначимо дані і знайдемо меншу основу трапеції.
Нас цікавить прямокутна трапеція, в якій точка дотику вписаного у неї кола розділяє більшу основу на відрізки 12 і 16.
Одна зі сторін вписаного кола буде паралельна меншій основі трапеції і ділить її на дві частини відповідно до відрізків 12 і 16. Отже, довжина меншої основи буде рівна сумі довжини цих двох відрізків, тобто 12 + 16 = 28.
Отже, менша основа трапеції дорівнює 28 одиницям.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili