
Реферат на тему построение правильного треугольника


Ответы на вопрос

Ответ:
Проведѐм анализ этой задачи.
Предположим, что задача решена — нарисуем
окружность с центром O и правильный треугольник
ABC, вписанный в неѐ.
Если провести радиусы в вершины этого треугольника,
то можно увидеть на рисунке три равных между собой
треугольника: OAB, OBC, OCA.
Треугольники эти равны по трѐм сторонам (две
стороны в каждом таком треугольнике – это радиусы
данной окружности, а третья сторона каждого из
них — это сторона правильного треугольника ABC).
Но тогда равны углы при вершине O в каждом из них.
А так как полный угол равен 3600
, то величина каждого из углов при вершине O в этих
треугольниках равна 1200
. Это наблюдение приводит к мысли о том, как решить
предложенную задачу.
Способ 1
1. Провести окружность.
2. Провести из центра окружности отрезок к точке
на окружности, то есть радиус окружности.
3. Повернуть его относительно центра окружности
на 120 градусов по часовой стрелке.
4. Повернуть его относительно центра окружности
на 120 градусов против часовой стрелки.
5. Соединить отрезками полученные на
окружности точки – концы трѐх радиусов.
Треугольник, сторонами которого являются построенные три отрезка, будет
правильным.
Доказательство
Пусть O — центр окружности, OA — первоначально построенный радиус, B и
C — полученные при таком построении точки. Отрезки OA, OB, OC равны как
радиусы одной окружности. Треугольники OAB, OBC, OCA равны по первому
признаку равенства треугольников. Отсюда следует, что отрезки AB, BC, CA равны
между собой, а потому треугольник ABC — правильный.
Способ 2
1. Провести окружность. Обозначить ее центр O.
2. Провести прямую через точку O, найти точки
пересечения прямой и окружности, обозначить
их A и B.
3. Повернуть прямую AB относительно точки B на
30°, найти точку пересечения полученной
прямой и окружности, обозначить ее C.
4. Повернуть прямую AB относительно точки B на
30° в другую сторону от диаметра AB, найти
точку пересечения полученной прямой и
окружности, обозначить ее D.
5. Построить отрезок CD.
6. Соединить отрезками полученные на окружности точки.
Доказательство
Проведѐм радиус OC. OC = OB как радиусы
окружности, следовательно треугольник OBC -
равнобедренный, поэтому угол OCB равен 30°.
Проведѐм радиус OD. OD = OB как радиусы
окружности, следовательно треугольник OBD -
равнобедренный, поэтому угол ODB равен 30°.
Получаем, что треугольники OBC и OBD равны (по стороне и двум углам), откуда
следует, что BС = BD . В равнобедренном треугольнике CBD угол CBD равен 60°.
Согласно одному из признаков равностороннего треугольника, треугольник CBD
является равносторонним.
Рассказ учителя
Способу 2 также может предшествовать анализ. Он
может быть проведѐн следующим образом. При
анализе, предшествующем первому построению, был
использован радиус исходной окружности. Можно
исходить из диаметра окружности.
Пусть равносторонний треугольник ABC вписан в
окружность с центром O. Проведѐм диаметр BD этой
окружности.



Построение правильного треугольника
Правильный треугольник – это геометрическая фигура, которая имеет три равные стороны и три равных угла, каждый из которых составляет 60 градусов. Построение правильного треугольника можно выполнить с использованием различных методов и инструментов. Ниже представлено одно из самых простых и классических методов построения правильного треугольника с помощью циркуля и линейки.
Шаг 1: Начните с подготовки рабочей поверхности. Разместите лист бумаги на плоской поверхности.
Шаг 2: Выберите точку A как начальную точку построения треугольника и обозначьте ее на листе бумаги.
Шаг 3: Используя циркуль, установите радиус, который будет равен длине одной из сторон будущего треугольника. Назовем эту длину "a". Поставьте конец циркуля в точке A и нарисуйте окружность радиусом "a".
Шаг 4: Теперь выберите точку B на окружности, которую вы только что нарисовали. Это будет вторая вершина вашего треугольника. Обозначьте ее.
Шаг 5: Снова используя циркуль с радиусом "a", поставьте его конец в точке B и нарисуйте вторую окружность.
Шаг 6: Теперь выберите точку C на второй окружности, где она пересекается с первой окружностью. Это будет третья вершина вашего правильного треугольника.
Шаг 7: Соедините точки A, B и C линейкой, чтобы получить правильный треугольник ABC.
Теперь у вас есть правильный треугольник со стороной "a" и углами, равными 60 градусов каждый. Этот метод построения использует свойство равных углов и сторон в правильных треугольниках, что делает его простым и надежным способом создания этой геометрической фигуры.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili