Вопрос задан 23.06.2023 в 14:55. Предмет Геометрия. Спрашивает Гарманова Даша.

Побудуйте точки, у які переходять точки М(4;0), К(-2;2) у результаті повороту на кут 90 градусів за

годинниковою стрілкою відносно початку координат. Укажіть координати отриманих точок. Помогите пожалуйста....
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Смирнов Александр.

Ответ:

точка м будет ровна 30 точка к 7

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для обчислення координат точок, отриманих в результаті повороту на 90 градусів за годинниковою стрілкою відносно початку координат, можна скористатися математичними формулами для обчислення координат у результаті обертання точок навколо початку координат.

Формули для обертання точок (x, y) на кут α градусів за годинниковою стрілкою відносно початку координат виглядають так:

Нова x-координата (x'): x=xcos(α)ysin(α)x' = x \cdot \cos(\alpha) - y \cdot \sin(\alpha)

Нова y-координата (y'): y=xsin(α)+ycos(α)y' = x \cdot \sin(\alpha) + y \cdot \cos(\alpha)

Де:

  • (x, y) - координати початкової точки
  • (x', y') - нові координати після обертання
  • α - кут обертання в радіанах (у данному випадку, α = 90 градусів)

Отже, для точки М(4;0), де x = 4 і y = 0, обчислимо нові координати після обертання на 90 градусів:

xM=4cos(90)0sin(90)=0x'_{M} = 4 \cdot \cos(90^\circ) - 0 \cdot \sin(90^\circ) = 0 yM=4sin(90)+0cos(90)=4y'_{M} = 4 \cdot \sin(90^\circ) + 0 \cdot \cos(90^\circ) = 4

Таким чином, координати точки М після обертання на 90 градусів будуть (0;4).

Аналогічно для точки К(-2;2), де x = -2 і y = 2, обчислимо нові координати після обертання на 90 градусів:

xK=(2)cos(90)2sin(90)=2x'_{K} = (-2) \cdot \cos(90^\circ) - 2 \cdot \sin(90^\circ) = 2 yK=(2)sin(90)+2cos(90)=2y'_{K} = (-2) \cdot \sin(90^\circ) + 2 \cdot \cos(90^\circ) = -2

Отже, координати точки К після обертання на 90 градусів будуть (2;-2).

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос