
Вопрос задан 03.07.2018 в 17:12.
Предмет Геометрия.
Спрашивает Никонов Максим.
На стороне BC,прямоугольника ABCD отмечена точка K так,что BK:KC=3:4.Выразите векторы AK и DK через
векторы a=AB и b=AD

Ответы на вопрос

Отвечает Врабий Анастасия.
∠ В+∠С=∠АКВ.
Проведем из К параллельно АС прямую КЕ.
∠ ВКЕ равен ∠ С ( по свойству параллельных прямых и секущей).
Отсюда ∠ ВКА минус ∠ С= ∠ В.
Получили при АС ᐃ АКС~ᐃ АВС по двум углам
∠АСК=∠ЕКВ и ∠КАС=∠АВС.
В подобных треугольниках соответственные стороны лежат против равных углов.
ВС:АС=АС:КС
АС²=ВС*КС
АС²=18*2
АС=√36=6
Теперь из из этих же подобных треугольников найдем АВ
АВ:АК=ВС:АС
АВ:5=18:6
6АВ=90
АВ=15


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili